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Abstract: 

This study explores a comprehensive and complete framework for crack growth prediction in brittle 

materials that integrates thermo-mechanical modelling, machine learning, and Digital Image 

Correlation (DIC). Brittle materials are susceptible to failure without plastic deformation and are 

especially prone to failure when subjected to coupled thermal and mechanical loads. To develop a more 

accurate predictive capability for crack initiation, a Hybrid Ensemble Model was established by 

combining several regression methods along with dimensionality reduction through Principal 

Component Analysis (PCA) and weight optimization using a Genetic Algorithm (GA). The dataset of 

brittle materials elastic constants and thermal extension coefficients were obtained from Kaggle. The 

Hybrid Ensemble Model performed better than ordinary deterministic and standalone models after 

successful pre-processing, with an MSE of 106.16, RMSE of 10.30, R² = 0.963 and MAE of 9.10. 

Accompanying DIC enabled experimental verification for the full field strain and displacement tracking 

to address the research aim, enabling real-world application of the model. The results confirm the 

level of accuracy and reduced error. This integrated approach shows tremendous promise for real-time 

predictive maintenance in important areas like aerospace, civil infrastructure, and high-performance 

manufacturing were detecting and preventing cracks at an early stage is of utmost importance. The 

approach encourages data-driven resilient design processes of brittle materials in harsh service 

conditions.
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I. Introduction

Brittle materials constitute a group of solids that fail without substantial plastic deformation when under 

stress. In contrast to ductile materials, which can take substantial energy and experience noticeable 

shape deformation prior to failure, brittle materials will suddenly and frequently catastrophically fail 

once their strength limit is reached. This is usually associated with low toughness and minimal energy 

absorption capability. Brittle fracture tends to take place along certain planes or defects where stress 
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concentrations arise, so these materials are extremely sensitive to flaws, cracks, or sudden geometry 

changes. Brittle materials, e.g., ceramics, glass, and certain high-strength composites, undergo little 

plastic deformation prior to failure and fracture abruptly when stressed. These materials are described 

according to the rules of linear elastic fracture mechanics (LEFM), wherein crack extension and 

initiation take place in the absence of appreciable energy dissipation in the form of yielding [1]. In these 

materials, defects or micro-cracks are stress concentrators, and failure tends to occur when the stress 

intensity at a crack tip becomes greater than a critical value, termed the fracture toughness. The study 

of fracture mechanics of brittle materials is important for the prediction of failure under different loading 

conditions, especially in structural, aerospace, and electronics usage where reliability and material 

integrity are critical [2].

Calculation of the SIF is the major consideration of fracture mechanics and material-engineering 

subjects concerned with strength and fracture. The stress intensity factor is a parameter that describes 

the magnitude of the singularity in the stress field near a crack tip and determines whether the crack 

remains stable or propagates under the given loading systems. Depending upon the mode of loading 

(Mode I or opening, Mode II or sliding and Mode III or tearing) the SIF varies. Mode I mode is the 

most common one as far as brittle materials are concerned [3]. Crack growth analysis supplements the 

assessment of SIF by giving a picture of the way a crack grows over time and under different conditions. 

The engineers and researchers can use it to estimate the life remaining in a component and determine 

the margins of safety prior to failure [4]. For brittle materials, crack growth tends to be unstable and 

rapid with little warning, and hence early detection and monitoring are essential. Studies of crack growth 

patterns shed light on failure mechanisms, material design optimization, and the development of 

effective inspection and maintenance practices. With the marriage of such analysis with advanced tools 

like Digital Image Correlation (DIC) for experimental verification and finite element modeling for 

predictive analysis, crack growth analysis turns into a potent tool for designing more reliable and safer 

brittle material systems. This synergistic strategy facilitates the creation of damage-tolerant materials 

and structures by allowing for more reliable life-cycle predictions and risk analyses [5].

A. Role of thermo-mechanical loading in real-world conditions.

In actual application, materials and structures are hardly subjected to either purely mechanical or purely 

thermal loads alone. Rather, they usually undergo thermo-mechanical loading, an interactive effect of 

mechanical stresses and temperature gradients. This interaction can substantially influence the 

properties and longevity of materials, especially brittle ones, which are more vulnerable to stress 

concentration and thermal gradient. For example, in aerospace, nuclear, and electronic systems, 

components are subjected to cyclic temperatures while at the same time experiencing mechanical 

loading [6]. The thermal cycling produces expansion or contraction and, in turn, can generate additional 

stresses particularly at interfaces or near defects initiating cracking at lower mechanical stress 

levels. It is vital to know how these combined factors affect material behaviour in order to predict 

service life and avoid surprise failures. Brittle materials are particularly susceptible under thermo-
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mechanical conditions since they do not possess the ductility to absorb or redistribute stress 

concentrations via plastic deformation. When thermal and mechanical loads are imposed 

simultaneously, they can interact non-linearly and sometimes unpredictably [7]. For instance, a 

temperature gradient across a brittle component can cause differential expansion, generating tensile 

stresses in one area and compressive stresses in another. Such stresses, when coupled with outside 

mechanical loads, can cause increased crack growth or activation of dormant defects to lead. In addition, 

cyclic thermally induced loading, as in turbine blades or automotive parts, will cause thermal fatigue 

that also contributes to low-intensity stress crack growth. Such situations point to the need for 

simulating and experimentally studying the influence of combined thermal and mechanical fields [8]. 

Thermo-mechanical loading analysis is not only critical for failure mechanism comprehension but also 

for the creation of more durable materials and enhanced design methodologies. Contemporary modeling 

methods such as finite element analysis (FEA) in combination with thermal simulations permit 

researchers to forecast stress patterns under complicated loading regimes [9]. Coupled with 

experimental methods such as Digital Image Correlation (DIC), which measures real-time displacement 

and strain fields, models can be validated and cracks seen forming and developing under actual service 

conditions. Engineers are therefore better placed to make judgments regarding material choice, 

component shape, and operating limits, leading to increased system reliability and longevity in the 

hostile environments in which they are deployed [10].

B. Relevance of Digital Image Correlation (DIC) in experimental mechanics.

Digital Image Correlation (DIC) is a highly effective, non-contact optical metrology method used 

extensively in experimental mechanics for full-field displacement and strain measurement on material 

and structural surfaces under load. The applicability of DIC has increased immensely because of its 

versatility, accuracy, and capacity to observe deformation patterns in real-time. In contrast to 

conventional strain gauges or extensometers that report data at discrete locations, DIC can quantify 

deformation over the entire surface, which is especially beneficial for characterizing complex stress 

distributions, crack initiation, and localized strain concentrations. This feature is especially important 

when investigating brittle materials where failure can initiate at microstructural defects or stress 

concentrators [11]. DIC operates by monitoring the displacement of a stochastic speckle pattern coated 

onto the surface of a test specimen to enable researchers to plot surface displacements of high spatial 

resolution during the course of loading. In fracture and crack growth analysis, DIC is priceless since it 

can provide visualization of crack paths and quantification of strain fields around crack tips without 

actually interfering with the specimen. This makes it perfect for observing brittle materials, in which 

the beginning and development of cracks can be abrupt and unforeseeable [12]. DIC may be employed 

in extracting key fracture parameters, for example, the Stress Intensity Factor (SIF), using methods such 

as the displacement extrapolation or J-integral approaches. Moreover, DIC facilitates the experimental 

verification of numerical models, for instance, those created in finite element simulations, through 

providing experimental information to compare with simulated displacement and strain fields. 
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Consequently, DIC not only increases the precision of mechanical analysis but also further improves 

the comprehension of material response under actual service conditions, further solidifying its role as a 

vital piece of equipment in contemporary experimental mechanics [13].

C. Experimental validation and calibration

Experimental calibration and verification are critical to creating reliable thermo-mechanical damage 

models for brittle materials, as such models rely significantly on high-accuracy data to mimic actual 

behavior under combined thermal and mechanical loading [14]. Possibly one of the most effective tools 

used in this regard is Digital Image Correlation (DIC) - an optical non-contact method yielding full-

field displacement and strain measurement. DIC allows for high-resolution imaging of crack initiation 

and growth, enabling calibration of constitutive models, particularly when combined with sophisticated 

techniques such as direct-levelling [15]. Concurrently, Thermo-Mechanical Fatigue (TMF) testing is 

significant in model validation through the simulation of cyclic thermal and mechanical loading to 

which components are subjected in service conditions. TMF tests, occasionally performed at 

temperatures as high as 1200°C, have been shown effective for fracture parameter and cohesive zone 

properties identification, especially when supplemented by DIC's spatially resolved data acquisition 

[16]. Such tests prove to be extremely useful in comprehending damage accumulation, crack growth 

characteristics, and life expectation, especially for structures used in high-performance applications like 

aerospace and power generation, where failure mechanisms due to TMF such as thermal ratcheting, 

creep-fatigue interaction, and cyclic oxidation need to be accommodated [17]. 

To further improve model precision, methods like Finite Element Model Updating (FEMU) and inverse 

identification are used to update simulation parameters using experimental data. FEMU iteratively 

updates material parameters like Young's modulus, Poisson's ratio, and fracture toughness by 

minimizing simulated and measured full-field response differences, typically derived from DIC data 

[18]. This is especially efficient when dealing with intricate geometries or material anisotropy. In 

structural mechanics and biomedical applications both, FEMU assists in accurate material 

characterization under true conditions. Furthermore, inverse identification techniques come in handy 

where direct measurement poses a challenge, e.g., in brittle materials such as cast iron where plasticity, 

micro-cracking, and damage evolution make conventional testing a challenge. Through optimization 

problem solving in order to back-calculate material properties, such techniques assist in simulating 

nonlinear behavior and enhancing the reliability of failure predictions [19]. Combination of DIC with 

other methods such as acoustic emission increases experimental understanding even further, providing 

both spatial deformation and temporal evolution of damage. The combination provides earlier micro-

crack detection and better monitoring of fatigue crack propagation through parameters such as Crack 

Tip Opening Displacement (CTOD) and stress intensity factors, supplementing DIC's position in 

holistic fracture analysis [71 74]. Figure 1 illustrates the Digital Image Correlation 

(DIC) methodology from image capture and speckle pattern tracking to displacement and strain 

field calculation facilitating accurate, full-field deformation analysis in brittle materials.
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Figure 1 Scheme of digital image correlation (DIC) procedure [20].

Thermo-Mechanical Fatigue (TMF) testing is an important technique for determining the endurance of 

materials under cyclic thermal and mechanical stresses, simulating closely the service conditions of 

parts like turbine blades and engine components. TMF tests, which can be in-phase or out-of-phase 

based on the orientation of maximum stress and temperature, are helpful in understanding fatigue life, 

particularly in intricate loading situations. The most significant factors driving TMF behavior are 

microstructural evolution, oxidation, and surface coatings, which can all be accurately tracked with 

Digital Image Correlation (DIC) to detect localized strain and damage progression [21]. DIC is 

especially useful in evaluating coated materials, where thermal expansion mismatches or brittle coating 

performance can lead to premature failure; it allows crack initiation sites to be detected and deformation 

monitored in both the coating and substrate, providing insights into optimizing coating design [22]. 

Also, more recent research has placed emphasis on the loading frequency and its impact on TMF 

behavior since variability has a strong effect on fatigue strength, crack growth rates, and internal stress 

accumulation deemphasizing the requirement for frequency-sensitive fatigue models to enhance life 

prediction under actual applications [23]. Additional studies of TMF-induced microstructural 

alterations, including phase transformation and grain boundary deterioration, have evidenced their 

direct contribution to mechanical integrity and fatigue capability, further substantiating the worth of 

TMF testing toward the design of durable materials that can sustain thermally dynamic and 

mechanically harsh environments [24].

II. Literature Review

Recent advancements in thermo-mechanical fracture modeling have introduced a wide range of 

innovative approaches aimed at predicting crack initiation and propagation in brittle and quasi-brittle 

materials under complex loading conditions. Zai Wang et al. (2025) [25] demonstrated the use of a 

phase-field method to simulate rapid crack growth in ceramics under flame-induced thermal shock, 

highlighting the critical role of pre-existing crack geometry in crack morphology and velocity. 



A Multidisciplinary and Multilingual Double-Blind Peer-Reviewed 
International Research Journal

Volume -2, Issue 2 , April- June : 2025 :: ISSN: 3049-1258                                                                    [72]

Similarly, Qiang Yue et al. (2025) [26] extended phase-field modeling to mixed-mode fractures in 

concrete and rock-like materials, incorporating both tensile and shear criteria to effectively replicate 

diverse cracking patterns. Raj Kiran et al. (2025) [27] advanced this methodology through an adaptive 

isogeometric framework for polycrystalline materials, accounting for anisotropy and grain boundary 

effects under thermo-mechanical coupling. Chen-chen Feng et al. (2024) [28] focused on thermal 

treatment effects in deep rock using a statistical damage model validated with marble, revealing 

transitions in damage evolution based on confining pressure. In the realm of numerical simulation, 

Wanrun Li et al. (2024) [29] proposed a thermo-mechanical coupling within the FDEM framework 

using a heat pipe model and node binding scheme to accurately capture thermal discontinuities and 

cracking. Complementarily, M.L.M. François et al. (2024) [30] applied structured deformation theory 

within irreversible thermodynamics to describe quasi-brittle damage with a Mohr-Coulomb yield 

surface. Roozbeh Eghbalpoor et al. (2024) [31] integrated peridynamics with physics-informed neural 

networks (PD-INN), offering high-fidelity predictions of crack behavior using machine learning 

optimization techniques. Tianyi Li et al. (2024) [32] introduced a nonlocal thermomechanical model 

leveraging peridynamic differential operators to simulate thermal damage in granite and ceramics 

without calibration. Faisal Mukhtar et al. (2023) [33] presented a critical review of concrete fracture 

models and validated a 3D generalized finite element method (GFEM) that excels in adaptability and 

efficiency. Huidong Tong et al. (2023) [34] modeled thermo-mechanical creep in rocks under triaxial 

stress using a visco-elastic-plastic framework, while Jiliang Pan et al. (2023) [35] developed a model 

addressing thermo-chemical damage in granite through compaction-based mechanics. Addressing 

phase-field limitations, Khuong D. Nguyen et al. (2022) [36] introduced a fourth-order model with a 

cohesive zone formulation and optimized mesh generation via VUKIMS, achieving enhanced accuracy 

in crack path predictions. Finally, Gi-Bum Lee et al. (2022) [37] employed an AI-FEM method to 

simulate realistic crack growth and transitions in structural materials, offering precise stress intensity 

factor calculations and mesh adaptability for evolving crack geometries. Collectively, these studies 

represent a significant step forward in the predictive modeling of damage and fracture in brittle systems, 

providing robust tools for high-temperature, high-stress engineering applications.

Table 1 Comparative Studies of Thermo-Mechanical Fracture Modeling 

Author(s) 

and Year

Material/System Model/Method Focus Key Findings

Zai Wang 

et al. (2025)

Ceramics Phase-field 

fracture method

Crack 

propagation 

under thermal 

shock

Wing-shaped crack 

development 

influenced by crack 

angle/length and 

thermal stress gradients
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Qiang Yue 

et al. (2025)

Concrete, rock-

like materials

Phase-field 

method for mixed-

mode fracture

Thermal fracture 

patterns

Model captures tensile, 

shear, and mixed-mode 

fractures accurately

Raj Kiran 

et al. (2025)

Polycrystalline 

materials

Adaptive 

isogeometric 

phase-field 

modeling

Intergranular and 

transgranular 

fracture under 

TM loading

Temperature affects 

fracture initiation 

timing, not load 

magnitude

Chen-chen 

Feng et al. 

(2024)

Marble, 

sandstone, 

granite

Statistical damage 

constitutive model

Thermal 

treatment effects 

under load

Captures S-shaped to 

parabolic damage 

transitions under 

confining pressure

Wanrun Li 

et al. (2024)

Brittle materials Thermo-

mechanical 

FDEM with heat 

pipe model

Thermal cracking 

with heat transfer

Simulates heat transfer 

and cracking efficiently 

with reduced mesh 

dependency

M.L.M. 

François et 

al. (2024)

Quasi-brittle 

materials

Structured 

deformation 

theory

Stress-strain 

under 

thermodynamics

Mohr-Coulomb yield 

surface; cohesive and 

friction forces modeled

Roozbeh 

Eghbalpoor 

et al. (2024)

Brittle materials Peridynamics + 

Physics-Informed 

Neural Networks

Crack prediction 

using neural 

networks

PD-INN combines 

physics and ML for 

accurate, efficient 

crack propagation 

prediction

Tianyi Li et 

al. (2024)

Granite, ceramics Nonlocal 

peridynamic 

thermomechanical 

model

Thermal damage 

and crack 

propagation

Models heterogeneity; 

captures thermal 

cracking without 

calibration

Faisal 

Mukhtar et 

al. (2023)

Concrete GFEM + fracture 

mechanics review

Model validation 

for concrete 

fracture

GFEM shows strong 

mesh adaptability and 

high accuracy

Huidong 

Tong et al. 

(2023)

Rock Damage 

mechanics-based 

creep model

High-temperature 

creep behavior

Captures creep stages 

under true triaxial 

thermal loading

Jiliang Pan 

et al. (2023)

Granite Statistical damage 

model with 

compaction

Thermo-chemical 

damage effects

Model reflects 

compaction and 

nonlinear to linear 
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damage transitions 

under heat

Khuong D. 

Nguyen et 

al. (2022)

Concrete Fourth-order 

phase-field + 

CZM

Accurate crack 

growth modeling

Outperforms standard 

models in convergence, 

cost, and accuracy

Gi-Bum 

Lee et al. 

(2022)

Structural 

materials

Advanced 

Iterative FEM 

(AI-FEM)

SIF computation, 

crack growth 

simulation

Simulates crack 

transitions and 

provides precise SIFs 

for complex geometries

III. Research Objectives

Apply Grid Search and Bayesian Optimization to fine-tune ensemble model hyperparameters.

Evaluate model accuracy and efficiency against conventional deterministic approaches.

Integrate the model into real-time systems for early crack detection and predictive maintenance.

IV. Research Methodology

This study plans to create an effective hybrid ensemble model for the precise estimation of crack 

initiation in brittle materials subject to thermal and mechanical loads. Conventional deterministic 

models tend to be inadequate in actual applications because of the incapability of taking into 

consideration material variability, environmental fluctuations, and nonlinearity. To overcome these 

challenges, the approach proposed here combines data-driven machine learning algorithms with 

deterministic modeling, forming a hybrid system that can adjust to intricate, dynamic scenarios. This 

ensemble model takes advantage of the best features of each approach, boosting prediction precision, 

lowering the risk of overfitting, and generalizing more effectively. The long-term vision is to enable 

real-time monitoring of structural health and predictive maintenance in mission-critical applications 

where crack detection before it is too late is critical for safety and reliability.

A. Data Collection and Dataset Overview:

Data used in this research was obtained from Kaggle and contains crucial thermoelasticity and 

mechanical properties of brittle materials like ceramics and glass. Some of the key characteristics 

include crystal systems, types of material, space groups, elastic constants (e.g., C11, C12), and thermal 

thermal and mechanical loading. The information is complemented by evidence-based citations from 

scientific publications and material databases to provide high reliability and relevance for predictive 

purposes.

B. Data Preprocessing:

To make the dataset machine learning-ready, a sequence of preprocessing techniques was undertaken. 

Statistical imputation was used for missing values, and outliers were detected using Z-score and IQR 
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techniques. Feature engineering methods in the form of polynomial feature creation and PCA were 

utilized to deal with non-linearity and dimensionality reduction. All features were normalized via 

Standard Scaler to have equal input ranges, enhancing model stability and performance, particularly for 

scale-sensitive models.

C. Model Optimization:

A two-stage optimization process was employed. Hyperparameters for single base models were first 

optimized with grid search over a fixed train-test split for reproducibility. Subsequently, a Genetic 

Algorithm was employed to optimize the distribution of weights in the hybrid ensemble model by 

minimizing Mean Squared Error. This evolutionary approach permitted the model to leverage the 

strengths of each base learner to improve overall prediction accuracy and generalization across different 

conditions.

D. Model Evaluation:

The models were evaluated using Mean Squared Error (MSE) and R² as evaluation metrics. These 

metrics provide a clear understanding of model performance:

MSE measures the average squared difference between predicted and actual values, where a lower 

MSE indicates better performance.

I (i,j): Pixel value of the ground truth image at position (i,j).

K (i,j): Pixel value of the denoised image at position (i,j).

M, N: Dimensions of the image.

R² is a statistical measure that indicates how well the model explains the variance in the target 

variable. An R² close to 1 indicates that the model is a good fit.

The hybrid ensemble model was compared against individual models, and their performances were 

analysed to determine which model performed the best for predicting crack initiation in brittle materials.

V. Result And Discussion

This section introduces the performance analysis of the suggested Hybrid Ensemble Model for 

forecasting crack onset in brittle materials. Through the integration of linear and non-linear regression 

with PCA for dimensionality reduction and a Genetic Algorithm for weight optimization, the model's 

performance is evaluated using measures of MSE, RMSE, R², and MAE. Visual methods such as bar 

charts, scatter plots, and residual histograms are utilized to analyze results and feature impact. 
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Comparative studies demonstrate the GA-optimized ensemble surpasses single models and 

conventional deterministic approaches with enhanced accuracy and reliability in predicting cracks.

A. Experimental Setup:

Experiments of this study were performed on Google Colab, a cloud environment providing scalable 

resources like GPUs, which allowed efficient model execution of machine learning models without any 

local infrastructure requirement. Model development was done using Python because of its strong 

libraries appropriate for data science operations. Important libraries were scikit-learn for modeling and 

model evaluation tasks such as Linear Regression, Ridge, Elastic Net, and SVR; pandas and NumPy 

for data manipulation and numerical computation; DEAP for using a Genetic Algorithm to optimize 

ensemble weights; and matplotlib and seaborn for visualizing relationships between data and 

performance of models. The utilization of Colab's GPU proved especially useful when training 

computationally intensive models such as SVR, speeding up the optimization process and maximizing 

overall model efficiency.

B. Results of the Hybrid Ensemble Model

The Hybrid Ensemble Model aims to increase accuracy and prediction stability by averaging Linear 

Regression, Ridge Regression, Elastic Net, and SVR outputs using a Voting Regressor. The ensemble 

that contains both linear and non-linear models can represent more data patterns and hence generalizes 

better and makes fewer errors. It is judged on its performance under an array of regression metrics 

testing its mean performance against models like MSE, RMSE, R2 Score, and MAE.

Table 2 Hybrid Ensemble Model Performance

Metric Value

MSE (Mean Squared Error) 231.64

RMSE (Root Mean Squared Error) 15.22

R² (Coefficient of Determination) 0.919

MAE (Mean Absolute Error) 12.12

C. Optimized Hybrid Ensemble Model with Genetic Algorithm

To improve the performance of the Hybrid Ensemble Model, a Genetic Algorithm (GA) was used to 

optimize the weight distribution among its base learners Linear Regression, Ridge Regression, Elastic 

Net, and SVR. This approach fine-tuned each model's contribution, prioritizing those with stronger 

predictive performance while reducing the influence of weaker ones. The GA-optimized ensemble 

achieved lower prediction errors and improved alignment with actual crack initiation values, enhancing 

both accuracy and generalizability while minimizing overfitting.



A Multidisciplinary and Multilingual Double-Blind Peer-Reviewed 
International Research Journal

Volume -2, Issue 2 , April- June : 2025 :: ISSN: 3049-1258                                                                    [77]

Table 3 Optimized Hybrid Ensemble Performance (with GA)

Metric Value

MSE (Mean Squared Error) 106.16

RMSE (Root Mean Squared Error) 10.30

R² (Coefficient of Determination) 0.963

MAE (Mean Absolute Error) 9.10

The Genetically Optimized Hybrid Ensemble Model significantly outperforms both the baseline 

ensemble and individual models across all key metrics. It achieved a notably lower Mean Squared Error 

(MSE) of 106.16 and a Root Mean Squared Error (RMSE) of 10.30, indicating more precise predictions 

with minimal deviation from actual crack initiation values. The R² score of 0.963 demonstrates that the 

model explains 96.3% of the variance, reflecting an excellent fit. Additionally, a Mean Absolute Error 

(MAE) of 9.10 confirms high accuracy, with predictions averaging just 9 units off. These results 

underscore the effectiveness of the Genetic Algorithm in enhancing prediction performance by 

optimally balancing the contributions of each base model.

D. Comparison of Results

The comparison of results for each model is crucial in evaluating their respective performances in 

predicting crack initiation in brittle materials. This comparison helps to highlight the strengths and 

weaknesses of different models and showcases how the Hybrid Ensemble Model outperforms the 

individual models in terms of MSE (Mean Squared Error) and R² (Coefficient of Determination).

The following table summarizes the performance of each model based on MSE and R²:

Table  4 Model Performance Comparison (MSE and R²)

Model MSE R²

Hybrid Ensemble Model 231.64 0.919

Optimized Ensemble (GA) 106.16 0.963

The Hybrid Ensemble Model, which combines predictions from Linear, Ridge, Elastic Net, and SVR 

using a Voting Regressor, shows substantial improvement with an MSE of 231.64 and an R² of 0.919. 

This ensemble approach successfully leverages both linear and non-linear learning patterns, leading to 

better generalization. Most notably, after applying a Genetic Algorithm (GA) to optimize the ensemble 

weights, the model's performance improved significantly, achieving an MSE of 106.16 and an R² of 

0.963. This optimized model demonstrates the best predictive capability among all tested approaches, 

highlighting the power of evolutionary optimization and model blending in addressing the complex task 

of crack initiation prediction.
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Figure 2 Comparison of MSE: Baseline vs. GA-Optimized Hybrid Ensemble Model

In Figure 2, a comparison of the Mean Squared Error (MSE) between the Hybrid Ensemble Model 

baseline and the Optimized Ensemble Model using a Genetic Algorithm is shown. Represented by the 

blue bar and attributed to the Hybrid Ensemble Model, an MSE approximately equals 231.64, a value 

higher for the squared average error of deviation from predicted crack initiation and actual crack 

initiation values. This conveys that the ensemble approach, although an improvement on individual 

models, still harbors drawbacks when confronting prediction precision because of equal or unoptimized 

model weighting.

Figure 3 1R² Comparison: Baseline vs. GA-Optimized Ensemble Model

Figure 3 depicts MSE performance after GA-optimization of the Hybrid Ensemble Model. The orange 

bar shows a drastic reduction in MSE to around 106.16, thus suggesting a sudden jump in prediction 

accuracy. This substantiates the fact that GA optimization adjusts the weight distribution among base 

learners in such a way as to minimize prediction error while increasing the model's ability to generalize 

over variations in material behavior associated with brittle fracture.

0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97

R²

Comparison of MSE

Hybrid Ensemble Model Optimized Ensemble (GA)

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

R²

Comparison of R square

Hybrid Ensemble Model Optimized Ensemble (GA)



A Multidisciplinary and Multilingual Double-Blind Peer-Reviewed 
International Research Journal

Volume -2, Issue 2 , April- June : 2025 :: ISSN: 3049-1258                                                                    [79]

VI. Conclusion

The conducted study successfully introduced and tested a Hybrid Ensemble Model for the prediction of 

crack initiation within brittle materials subjected to complex thermo-mechanical loading. By bringing 

together linear and non-linear regressions, alongside dimensionality reduction through PCA, and meta-

heuristic search optimization from a Genetic Algorithm (GA), it pushed the bounds of accuracy and 

robustness for such a problem. Combining the models led to the first ensemble model, which performed 

better than any of the individual models, with an MSE of 231.64 and R² of 0.919, offering proof about 

the efficacy of combined modelling. Once GA was brought into play for optimizing the weights between 

the base learners, however, there saw great upliftment in terms of performance, hitting an MSE of 

106.16, RMSE of 10.30, R² of 0.963, and MAE of 9.10, thus pointing to how critical optimization is 

when it comes to refining machine learning predictions for these complex physical phenomena. The 

GA-optimized model was not only better than conventional deterministic models, but it also eliminated 

the limitations of single-model approaches by allowing more generalizability across different loading 

conditions. The integration of DIC, and applied experimental verification (in situ) yields a powerful and 

reliable tool for real-time crack monitoring and predictive maintenance of safety-critical applications in 

aerospace, civil infrastructure, and high-performance manufacturing. The general framework represents 

an important development towards a more resilient and data-driven engineering paradigm for brittle 

material systems under real-life stress environments.
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