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Abstract:
This study explores a comprehensive and complete framework for crack growth prediction in brittle
materials that integrates thermo-mechanical modelling, machine learning, and Digital Image
Correlation (DIC). Brittle materials are susceptible to failure without plastic deformation and are
especially prone to failure when subjected to coupled thermal and mechanical loads. To develop a more
accurate predictive capability for crack initiation, a Hybrid Ensemble Model was established by
combining several regression methods along with dimensionality reduction through Principal
Component Analysis (PCA) and weight optimization using a Genetic Algorithm (GA). The dataset of
brittle materials elastic constants and thermal extension coefficients were obtained from Kaggle. The
Hybrid Ensemble Model performed better than ordinary deterministic and standalone models after
successful pre-processing, with an MSE of 106.16, RMSE of 10.30, R? = 0.963 and MAE of 9.10.
Accompanying DIC enabled experimental verification for the full field strain and displacement tracking
to address the research aim, enabling real-world application of the model. The results confirm the
ensemble’s ability to successfully generalize with different loading conditions while preserving a high
level of accuracy and reduced error. This integrated approach shows tremendous promise for real-time
predictive maintenance in important areas like aerospace, civil infrastructure, and high-performance
manufacturing were detecting and preventing cracks at an early stage is of utmost importance. The
approach encourages data-driven resilient design processes of brittle materials in harsh service
conditions.
Keywords:
Brittle Materials, Crack Initiation, Thermo-Mechanical Modeling, Digital Image Correlation (DIC),
Hybrid Ensemble Model, Machine Learning, Genetic Algorithm.

I.  Introduction
Brittle materials constitute a group of solids that fail without substantial plastic deformation when under
stress. In contrast to ductile materials, which can take substantial energy and experience noticeable
shape deformation prior to failure, brittle materials will suddenly and frequently catastrophically fail
once their strength limit is reached. This is usually associated with low toughness and minimal energy

absorption capability. Brittle fracture tends to take place along certain planes or defects where stress
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concentrations arise, so these materials are extremely sensitive to flaws, cracks, or sudden geometry
changes. Brittle materials, e.g., ceramics, glass, and certain high-strength composites, undergo little
plastic deformation prior to failure and fracture abruptly when stressed. These materials are described
according to the rules of linear elastic fracture mechanics (LEFM), wherein crack extension and
initiation take place in the absence of appreciable energy dissipation in the form of yielding [1]. In these
materials, defects or micro-cracks are stress concentrators, and failure tends to occur when the stress
intensity at a crack tip becomes greater than a critical value, termed the fracture toughness. The study
of fracture mechanics of brittle materials is important for the prediction of failure under different loading
conditions, especially in structural, aerospace, and electronics usage where reliability and material
integrity are critical [2].

Calculation of the SIF is the major consideration of fracture mechanics and material-engineering
subjects concerned with strength and fracture. The stress intensity factor is a parameter that describes
the magnitude of the singularity in the stress field near a crack tip and determines whether the crack
remains stable or propagates under the given loading systems. Depending upon the mode of loading
(Mode I or opening, Mode II or sliding and Mode III or tearing) the SIF varies. Mode I mode is the
most common one as far as brittle materials are concerned [3]. Crack growth analysis supplements the
assessment of SIF by giving a picture of the way a crack grows over time and under different conditions.
The engineers and researchers can use it to estimate the life remaining in a component and determine
the margins of safety prior to failure [4]. For brittle materials, crack growth tends to be unstable and
rapid with little warning, and hence early detection and monitoring are essential. Studies of crack growth
patterns shed light on failure mechanisms, material design optimization, and the development of
effective inspection and maintenance practices. With the marriage of such analysis with advanced tools
like Digital Image Correlation (DIC) for experimental verification and finite element modeling for
predictive analysis, crack growth analysis turns into a potent tool for designing more reliable and safer
brittle material systems. This synergistic strategy facilitates the creation of damage-tolerant materials
and structures by allowing for more reliable life-cycle predictions and risk analyses [5].

A. Role of thermo-mechanical loading in real-world conditions.

In actual application, materials and structures are hardly subjected to either purely mechanical or purely
thermal loads alone. Rather, they usually undergo thermo-mechanical loading, an interactive effect of
mechanical stresses and temperature gradients. This interaction can substantially influence the
properties and longevity of materials, especially brittle ones, which are more vulnerable to stress
concentration and thermal gradient. For example, in aerospace, nuclear, and electronic systems,
components are subjected to cyclic temperatures while at the same time experiencing mechanical
loading [6]. The thermal cycling produces expansion or contraction and, in turn, can generate additional
stresses—particularly at interfaces or near defects—initiating cracking at lower mechanical stress
levels. It is vital to know how these combined factors affect material behaviour in order to predict

service life and avoid surprise failures. Brittle materials are particularly susceptible under thermo-
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mechanical conditions since they do not possess the ductility to absorb or redistribute stress
concentrations via plastic deformation. When thermal and mechanical loads are imposed
simultaneously, they can interact non-linearly and sometimes unpredictably [7]. For instance, a
temperature gradient across a brittle component can cause differential expansion, generating tensile
stresses in one area and compressive stresses in another. Such stresses, when coupled with outside
mechanical loads, can cause increased crack growth or activation of dormant defects to lead. In addition,
cyclic thermally induced loading, as in turbine blades or automotive parts, will cause thermal fatigue
that also contributes to low-intensity stress crack growth. Such situations point to the need for
simulating and experimentally studying the influence of combined thermal and mechanical fields [8].
Thermo-mechanical loading analysis is not only critical for failure mechanism comprehension but also
for the creation of more durable materials and enhanced design methodologies. Contemporary modeling
methods—such as finite element analysis (FEA) in combination with thermal simulations—permit
researchers to forecast stress patterns under complicated loading regimes [9]. Coupled with
experimental methods such as Digital Image Correlation (DIC), which measures real-time displacement
and strain fields, models can be validated and cracks seen forming and developing under actual service
conditions. Engineers are therefore better placed to make judgments regarding material choice,
component shape, and operating limits, leading to increased system reliability and longevity in the
hostile environments in which they are deployed [10].
B. Relevance of Digital Image Correlation (DIC) in experimental mechanics.

Digital Image Correlation (DIC) is a highly effective, non-contact optical metrology method used
extensively in experimental mechanics for full-field displacement and strain measurement on material
and structural surfaces under load. The applicability of DIC has increased immensely because of its
versatility, accuracy, and capacity to observe deformation patterns in real-time. In contrast to
conventional strain gauges or extensometers that report data at discrete locations, DIC can quantify
deformation over the entire surface, which is especially beneficial for characterizing complex stress
distributions, crack initiation, and localized strain concentrations. This feature is especially important
when investigating brittle materials where failure can initiate at microstructural defects or stress
concentrators [11]. DIC operates by monitoring the displacement of a stochastic speckle pattern coated
onto the surface of a test specimen to enable researchers to plot surface displacements of high spatial
resolution during the course of loading. In fracture and crack growth analysis, DIC is priceless since it
can provide visualization of crack paths and quantification of strain fields around crack tips without
actually interfering with the specimen. This makes it perfect for observing brittle materials, in which
the beginning and development of cracks can be abrupt and unforeseeable [12]. DIC may be employed
in extracting key fracture parameters, for example, the Stress Intensity Factor (SIF), using methods such
as the displacement extrapolation or J-integral approaches. Moreover, DIC facilitates the experimental
verification of numerical models, for instance, those created in finite element simulations, through

providing experimental information to compare with simulated displacement and strain fields.
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Consequently, DIC not only increases the precision of mechanical analysis but also further improves
the comprehension of material response under actual service conditions, further solidifying its role as a
vital piece of equipment in contemporary experimental mechanics [13].
C. Experimental validation and calibration

Experimental calibration and verification are critical to creating reliable thermo-mechanical damage
models for brittle materials, as such models rely significantly on high-accuracy data to mimic actual
behavior under combined thermal and mechanical loading [14]. Possibly one of the most effective tools
used in this regard is Digital Image Correlation (DIC) - an optical non-contact method yielding full-
field displacement and strain measurement. DIC allows for high-resolution imaging of crack initiation
and growth, enabling calibration of constitutive models, particularly when combined with sophisticated
techniques such as direct-levelling [15]. Concurrently, Thermo-Mechanical Fatigue (TMF) testing is
significant in model validation through the simulation of cyclic thermal and mechanical loading to
which components are subjected in service conditions. TMF tests, occasionally performed at
temperatures as high as 1200°C, have been shown effective for fracture parameter and cohesive zone
properties identification, especially when supplemented by DIC's spatially resolved data acquisition
[16]. Such tests prove to be extremely useful in comprehending damage accumulation, crack growth
characteristics, and life expectation, especially for structures used in high-performance applications like
aerospace and power generation, where failure mechanisms due to TMF such as thermal ratcheting,
creep-fatigue interaction, and cyclic oxidation need to be accommodated [17].

To further improve model precision, methods like Finite Element Model Updating (FEMU) and inverse
identification are used to update simulation parameters using experimental data. FEMU iteratively
updates material parameters—like Young's modulus, Poisson's ratio, and fracture toughness—by
minimizing simulated and measured full-field response differences, typically derived from DIC data
[18]. This is especially efficient when dealing with intricate geometries or material anisotropy. In
structural mechanics and biomedical applications both, FEMU assists in accurate material
characterization under true conditions. Furthermore, inverse identification techniques come in handy
where direct measurement poses a challenge, e.g., in brittle materials such as cast iron where plasticity,
micro-cracking, and damage evolution make conventional testing a challenge. Through optimization
problem solving in order to back-calculate material properties, such techniques assist in simulating
nonlinear behavior and enhancing the reliability of failure predictions [19]. Combination of DIC with
other methods such as acoustic emission increases experimental understanding even further, providing
both spatial deformation and temporal evolution of damage. The combination provides earlier micro-
crack detection and better monitoring of fatigue crack propagation through parameters such as Crack
Tip Opening Displacement (CTOD) and stress intensity factors, supplementing DIC's position in
holistic fracture analysis [71-74]. Figure 1 illustrates the Digital Image Correlation
(DIC) methodology—from image capture and speckle pattern tracking to displacement and strain

field calculation—facilitating accurate, full-field deformation analysis in brittle materials.
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Figure 1 Scheme of digital image correlation (DIC) procedure [20].
Thermo-Mechanical Fatigue (TMF) testing is an important technique for determining the endurance of
materials under cyclic thermal and mechanical stresses, simulating closely the service conditions of
parts like turbine blades and engine components. TMF tests, which can be in-phase or out-of-phase
based on the orientation of maximum stress and temperature, are helpful in understanding fatigue life,
particularly in intricate loading situations. The most significant factors driving TMF behavior are
microstructural evolution, oxidation, and surface coatings, which can all be accurately tracked with
Digital Image Correlation (DIC) to detect localized strain and damage progression [21]. DIC is
especially useful in evaluating coated materials, where thermal expansion mismatches or brittle coating
performance can lead to premature failure; it allows crack initiation sites to be detected and deformation
monitored in both the coating and substrate, providing insights into optimizing coating design [22].
Also, more recent research has placed emphasis on the loading frequency and its impact on TMF
behavior since variability has a strong effect on fatigue strength, crack growth rates, and internal stress
accumulation—deemphasizing the requirement for frequency-sensitive fatigue models to enhance life
prediction under actual applications [23]. Additional studies of TMF-induced microstructural
alterations, including phase transformation and grain boundary deterioration, have evidenced their
direct contribution to mechanical integrity and fatigue capability, further substantiating the worth of
TMF testing toward the design of durable materials that can sustain thermally dynamic and
mechanically harsh environments [24].
II.  Literature Review

Recent advancements in thermo-mechanical fracture modeling have introduced a wide range of
innovative approaches aimed at predicting crack initiation and propagation in brittle and quasi-brittle
materials under complex loading conditions. Zai Wang et al. (2025) [25] demonstrated the use of a
phase-field method to simulate rapid crack growth in ceramics under flame-induced thermal shock,

highlighting the critical role of pre-existing crack geometry in crack morphology and velocity.
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Similarly, Qiang Yue et al. (2025) [26] extended phase-field modeling to mixed-mode fractures in
concrete and rock-like materials, incorporating both tensile and shear criteria to effectively replicate
diverse cracking patterns. Raj Kiran et al. (2025) [27] advanced this methodology through an adaptive
isogeometric framework for polycrystalline materials, accounting for anisotropy and grain boundary
effects under thermo-mechanical coupling. Chen-chen Feng et al. (2024) [28] focused on thermal
treatment effects in deep rock using a statistical damage model validated with marble, revealing
transitions in damage evolution based on confining pressure. In the realm of numerical simulation,
Wanrun Li et al. (2024) [29] proposed a thermo-mechanical coupling within the FDEM framework
using a heat pipe model and node binding scheme to accurately capture thermal discontinuities and
cracking. Complementarily, M.L.M. Francois et al. (2024) [30] applied structured deformation theory
within irreversible thermodynamics to describe quasi-brittle damage with a Mohr-Coulomb yield
surface. Roozbeh Eghbalpoor et al. (2024) [31] integrated peridynamics with physics-informed neural
networks (PD-INN), offering high-fidelity predictions of crack behavior using machine learning
optimization techniques. Tianyi Li et al. (2024) [32] introduced a nonlocal thermomechanical model
leveraging peridynamic differential operators to simulate thermal damage in granite and ceramics
without calibration. Faisal Mukhtar et al. (2023) [33] presented a critical review of concrete fracture
models and validated a 3D generalized finite element method (GFEM) that excels in adaptability and
efficiency. Huidong Tong et al. (2023) [34] modeled thermo-mechanical creep in rocks under triaxial
stress using a visco-elastic-plastic framework, while Jiliang Pan et al. (2023) [35] developed a model
addressing thermo-chemical damage in granite through compaction-based mechanics. Addressing
phase-field limitations, Khuong D. Nguyen et al. (2022) [36] introduced a fourth-order model with a
cohesive zone formulation and optimized mesh generation via VUKIMS, achieving enhanced accuracy
in crack path predictions. Finally, Gi-Bum Lee et al. (2022) [37] employed an AI-FEM method to
simulate realistic crack growth and transitions in structural materials, offering precise stress intensity
factor calculations and mesh adaptability for evolving crack geometries. Collectively, these studies
represent a significant step forward in the predictive modeling of damage and fracture in brittle systems,

providing robust tools for high-temperature, high-stress engineering applications.

Table 1 Comparative Studies of Thermo-Mechanical Fracture Modeling

Author(s) Material/System | Model/Method Focus Key Findings

and Year

Zai Wang | Ceramics Phase-field Crack Wing-shaped crack
et al. (2025) fracture method propagation development

under  thermal | influenced by crack
shock angle/length and

thermal stress gradients
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Qiang Yue
et al. (2025)

Concrete, rock-

like materials

Phase-field
method for mixed-

mode fracture

Thermal fracture

patterns

Model captures tensile,
shear, and mixed-mode

fractures accurately

Raj Kiran | Polycrystalline Adaptive Intergranular and | Temperature  affects
et al. (2025) | materials isogeometric transgranular fracture initiation
phase-field fracture  under | timing, not  load
modeling TM loading magnitude
Chen-chen | Marble, Statistical damage | Thermal Captures S-shaped to
Feng et al. | sandstone, constitutive model | treatment effects | parabolic damage
(2024) granite under load transitions under
confining pressure
Wanrun Li | Brittle materials | Thermo- Thermal cracking | Simulates heat transfer
et al. (2024) mechanical with heat transfer | and cracking efficiently

FDEM with heat with reduced mesh
pipe model dependency
M.L.M. Quasi-brittle Structured Stress-strain Mohr-Coulomb  yield
Francois et | materials deformation under surface; cohesive and
al. (2024) theory thermodynamics | friction forces modeled
Roozbeh Brittle materials | Peridynamics + | Crack prediction | PD-INN combines
Eghbalpoor Physics-Informed | using neural | physics and ML for
et al. (2024) Neural Networks | networks accurate, efficient
crack propagation
prediction
Tianyi Li et | Granite, ceramics | Nonlocal Thermal damage | Models heterogeneity;
al. (2024) peridynamic and crack | captures thermal
thermomechanical | propagation cracking without
model calibration
Faisal Concrete GFEM + fracture | Model validation | GFEM shows strong
Mukhtar et mechanics review | for concrete | mesh adaptability and
al. (2023) fracture high accuracy
Huidong Rock Damage High-temperature | Captures creep stages
Tong et al. mechanics-based | creep behavior under true ftriaxial
(2023) creep model thermal loading
Jiliang Pan | Granite Statistical damage | Thermo-chemical | Model reflects
et al. (2023) model with | damage effects compaction and
compaction nonlinear to linear
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damage transitions

under heat
Khuong D. | Concrete Fourth-order Accurate  crack | Outperforms standard
Nguyen et phase-field + | growth modeling | models in convergence,
al. (2022) CZM cost, and accuracy
Gi-Bum Structural Advanced SIF computation, | Simulates crack
Lee et al. materials Iterative FEM | crack growth | transitions and
(2022) (AI-FEM) simulation provides precise SIFs

for complex geometries

III.

Iv.

Research Objectives
e Apply Grid Search and Bayesian Optimization to fine-tune ensemble model hyperparameters.
e Evaluate model accuracy and efficiency against conventional deterministic approaches.

¢ Integrate the model into real-time systems for early crack detection and predictive maintenance.

Research Methodology
This study plans to create an effective hybrid ensemble model for the precise estimation of crack
initiation in brittle materials subject to thermal and mechanical loads. Conventional deterministic
models tend to be inadequate in actual applications because of the incapability of taking into
consideration material variability, environmental fluctuations, and nonlinearity. To overcome these
challenges, the approach proposed here combines data-driven machine learning algorithms with
deterministic modeling, forming a hybrid system that can adjust to intricate, dynamic scenarios. This
ensemble model takes advantage of the best features of each approach, boosting prediction precision,
lowering the risk of overfitting, and generalizing more effectively. The long-term vision is to enable
real-time monitoring of structural health and predictive maintenance in mission-critical applications
where crack detection before it is too late is critical for safety and reliability.

A. Data Collection and Dataset Overview:
Data used in this research was obtained from Kaggle and contains crucial thermoelasticity and
mechanical properties of brittle materials like ceramics and glass. Some of the key characteristics
include crystal systems, types of material, space groups, elastic constants (e.g., C11, C12), and thermal
expansion coefficients (e.g., all, a12), which are crucial in modeling the initiation of cracks due to
thermal and mechanical loading. The information is complemented by evidence-based citations from
scientific publications and material databases to provide high reliability and relevance for predictive
purposes.

B. Data Preprocessing:
To make the dataset machine learning-ready, a sequence of preprocessing techniques was undertaken.

Statistical imputation was used for missing values, and outliers were detected using Z-score and IQR
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techniques. Feature engineering methods in the form of polynomial feature creation and PCA were
utilized to deal with non-linearity and dimensionality reduction. All features were normalized via
Standard Scaler to have equal input ranges, enhancing model stability and performance, particularly for
scale-sensitive models.

C. Model Optimization:
A two-stage optimization process was employed. Hyperparameters for single base models were first
optimized with grid search over a fixed train-test split for reproducibility. Subsequently, a Genetic
Algorithm was employed to optimize the distribution of weights in the hybrid ensemble model by
minimizing Mean Squared Error. This evolutionary approach permitted the model to leverage the
strengths of each base learner to improve overall prediction accuracy and generalization across different
conditions.

D. Model Evaluation:
The models were evaluated using Mean Squared Error (MSE) and R? as evaluation metrics. These
metrics provide a clear understanding of model performance:
¢ MSE measures the average squared difference between predicted and actual values, where a lower

MSE indicates better performance.
M N
1 A8 . N2
MSE = - (100.)) - K(i.))
i=1j=1
¢ [ (i,j): Pixel value of the ground truth image at position (i,j).

e K (i,j): Pixel value of the denoised image at position (i,j).

M, N: Dimensions of the image.

N
1 ; .
RMSE = | Olrue = Vhrea) 2
I=1

e R?is a statistical measure that indicates how well the model explains the variance in the target
variable. An R? close to 1 indicates that the model is a good fit.

The hybrid ensemble model was compared against individual models, and their performances were

analysed to determine which model performed the best for predicting crack initiation in brittle materials.
V.  Result And Discussion

This section introduces the performance analysis of the suggested Hybrid Ensemble Model for
forecasting crack onset in brittle materials. Through the integration of linear and non-linear regression
with PCA for dimensionality reduction and a Genetic Algorithm for weight optimization, the model's
performance is evaluated using measures of MSE, RMSE, R?, and MAE. Visual methods such as bar

charts, scatter plots, and residual histograms are utilized to analyze results and feature impact.
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Comparative studies demonstrate the GA-optimized ensemble surpasses single models and
conventional deterministic approaches with enhanced accuracy and reliability in predicting cracks.

A. Experimental Setup:
Experiments of this study were performed on Google Colab, a cloud environment providing scalable
resources like GPUs, which allowed efficient model execution of machine learning models without any
local infrastructure requirement. Model development was done using Python because of its strong
libraries appropriate for data science operations. Important libraries were scikit-learn for modeling and
model evaluation tasks such as Linear Regression, Ridge, Elastic Net, and SVR; pandas and NumPy
for data manipulation and numerical computation; DEAP for using a Genetic Algorithm to optimize
ensemble weights; and matplotlib and seaborn for visualizing relationships between data and
performance of models. The utilization of Colab's GPU proved especially useful when training
computationally intensive models such as SVR, speeding up the optimization process and maximizing
overall model efficiency.

B. Results of the Hybrid Ensemble Model
The Hybrid Ensemble Model aims to increase accuracy and prediction stability by averaging Linear
Regression, Ridge Regression, Elastic Net, and SVR outputs using a Voting Regressor. The ensemble
that contains both linear and non-linear models can represent more data patterns and hence generalizes
better and makes fewer errors. It is judged on its performance under an array of regression metrics
testing its mean performance against models like MSE, RMSE, R? Score, and MAE.
Table 2 Hybrid Ensemble Model Performance
Metric Value
MSE (Mean Squared Error) 231.64
RMSE (Root Mean Squared Error) | 15.22
R? (Coefficient of Determination) | 0.919
MAE (Mean Absolute Error) 12.12

C. Optimized Hybrid Ensemble Model with Genetic Algorithm
To improve the performance of the Hybrid Ensemble Model, a Genetic Algorithm (GA) was used to
optimize the weight distribution among its base learners—Linear Regression, Ridge Regression, Elastic
Net, and SVR. This approach fine-tuned each model's contribution, prioritizing those with stronger
predictive performance while reducing the influence of weaker ones. The GA-optimized ensemble
achieved lower prediction errors and improved alignment with actual crack initiation values, enhancing

both accuracy and generalizability while minimizing overfitting.
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Table 3 Optimized Hybrid Ensemble Performance (with GA)
Metric Value
MSE (Mean Squared Error) 106.16
RMSE (Root Mean Squared Error) | 10.30
R? (Coefficient of Determination) | 0.963
MAE (Mean Absolute Error) 9.10

The Genetically Optimized Hybrid Ensemble Model significantly outperforms both the baseline
ensemble and individual models across all key metrics. It achieved a notably lower Mean Squared Error
(MSE) of 106.16 and a Root Mean Squared Error (RMSE) of 10.30, indicating more precise predictions
with minimal deviation from actual crack initiation values. The R? score of 0.963 demonstrates that the
model explains 96.3% of the variance, reflecting an excellent fit. Additionally, a Mean Absolute Error
(MAE) of 9.10 confirms high accuracy, with predictions averaging just 9 units off. These results
underscore the effectiveness of the Genetic Algorithm in enhancing prediction performance by
optimally balancing the contributions of each base model.

D. Comparison of Results
The comparison of results for each model is crucial in evaluating their respective performances in
predicting crack initiation in brittle materials. This comparison helps to highlight the strengths and
weaknesses of different models and showcases how the Hybrid Ensemble Model outperforms the
individual models in terms of MSE (Mean Squared Error) and R? (Coefficient of Determination).
The following table summarizes the performance of each model based on MSE and R*:
Table 4 Model Performance Comparison (MSE and R?)
Model MSE | R?
Hybrid Ensemble Model 231.64 | 0.919
Optimized Ensemble (GA) | 106.16 | 0.963
The Hybrid Ensemble Model, which combines predictions from Linear, Ridge, Elastic Net, and SVR

using a Voting Regressor, shows substantial improvement with an MSE of 231.64 and an R? of 0.919.
This ensemble approach successfully leverages both linear and non-linear learning patterns, leading to
better generalization. Most notably, after applying a Genetic Algorithm (GA) to optimize the ensemble
weights, the model's performance improved significantly, achieving an MSE of 106.16 and an R? of
0.963. This optimized model demonstrates the best predictive capability among all tested approaches,
highlighting the power of evolutionary optimization and model blending in addressing the complex task

of crack initiation prediction.
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Figure 2 Comparison of MSE: Baseline vs. GA-Optimized Hybrid Ensemble Model

In Figure 2, a comparison of the Mean Squared Error (MSE) between the Hybrid Ensemble Model
baseline and the Optimized Ensemble Model using a Genetic Algorithm is shown. Represented by the
blue bar and attributed to the Hybrid Ensemble Model, an MSE approximately equals 231.64, a value
higher for the squared average error of deviation from predicted crack initiation and actual crack
initiation values. This conveys that the ensemble approach, although an improvement on individual
models, still harbors drawbacks when confronting prediction precision because of equal or unoptimized

model weighting.

Comparison of R square
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Figure 3 1R? Comparison: Baseline vs. GA-Optimized Ensemble Model

Figure 3 depicts MSE performance after GA-optimization of the Hybrid Ensemble Model. The orange
bar shows a drastic reduction in MSE to around 106.16, thus suggesting a sudden jump in prediction
accuracy. This substantiates the fact that GA optimization adjusts the weight distribution among base
learners in such a way as to minimize prediction error while increasing the model's ability to generalize

over variations in material behavior associated with brittle fracture.
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VI.  Conclusion

The conducted study successfully introduced and tested a Hybrid Ensemble Model for the prediction of
crack initiation within brittle materials subjected to complex thermo-mechanical loading. By bringing
together linear and non-linear regressions, alongside dimensionality reduction through PCA, and meta-
heuristic search optimization from a Genetic Algorithm (GA), it pushed the bounds of accuracy and
robustness for such a problem. Combining the models led to the first ensemble model, which performed
better than any of the individual models, with an MSE of 231.64 and R? of 0.919, offering proof about
the efficacy of combined modelling. Once GA was brought into play for optimizing the weights between
the base learners, however, there saw great upliftment in terms of performance, hitting an MSE of
106.16, RMSE of 10.30, R? of 0.963, and MAE of 9.10, thus pointing to how critical optimization is
when it comes to refining machine learning predictions for these complex physical phenomena. The
GA-optimized model was not only better than conventional deterministic models, but it also eliminated
the limitations of single-model approaches by allowing more generalizability across different loading
conditions. The integration of DIC, and applied experimental verification (in situ) yields a powerful and
reliable tool for real-time crack monitoring and predictive maintenance of safety-critical applications in
aerospace, civil infrastructure, and high-performance manufacturing. The general framework represents
an important development towards a more resilient and data-driven engineering paradigm for brittle
material systems under real-life stress environments.
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